I HBS PLATE EVO

PAN HEAD SCREW

HBS P EVO

Designed for outdoor steel-to-timber joints: the thickness of the shoulder screw is increased for completely safe, reliable fastening plates to the timber. The small sizes (5,0 and 6,0 mm) are also ideal for timber-to-timber joints.

C4 EVO COATING

20 µm multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.

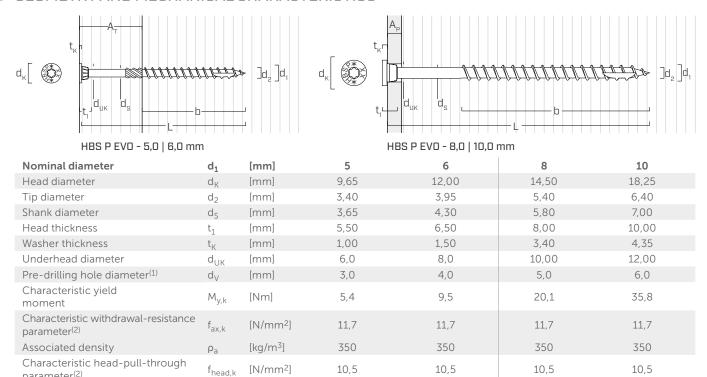
AGGRESSIVE WOODS

Ideal for applications with woods containing tannin or treated with impregnating agents or other chemical processes.

CHARACTERISTICS

FOCUS	corrosiveness class C4
HEAD	shoulder for plate
DIAMETER	from 5,0 to 10,0 mm
LENGTH	from 40 to 180 mm

MATERIAL


Carbon steel, with a 20 µm coating, highly resistant to corrosion.

FIELDS OF USE

- timber based panels
- solid timber and glulam
- CLT, LVL
- high density woods
- aggressive woods (containing tannin)
- chemically treated woods

Service classes 1, 2 and 3.

GEOMETRY AND MECHANICAL CHARACTERISTICS

350

7,9

parameter⁽²⁾

strength

Associated density

Characteristic tensile

f_{tens.k}

ρа

 $[kg/m^3]$

[kN]

CODES AND DIMENSIONS

$d_{_1}$	CODE		L	b	A _T	A _P	pcs
[mm] [in]		[mm]	[in]	[mm]	[mm]	[mm]	
_	HBSPEVO550	50	1 15/16	30	20	1.0 ÷ 10.0	200
5 0.20	HBSPEVO560	60	2 3/8	35	25	1.0 ÷ 10.0	200
TX 25	HBSPEVO570	70	2 3/4	40	30	1.0 ÷ 10.0	100
17, 23	HBSPEVO580	80	3 1/8	50	30	1.0 ÷ 10.0	100
6	HBSPEVO680	80	3 1/8	50	30	1.0 ÷ 10.0	100
TX 30	HBSPEVO690	90	3 1/2	55	35	1.0 ÷ 10.0	100
	HBSPEVO840	40	1 9/16	32	-	1.0 ÷ 15.0	100
8 0.32 TX 40	HBSPEVO860	60	2 3/8	52	-	1.0 ÷ 15.0	100
	HBSPEVO880	80	3 1/8	55	-	1.0 ÷ 15.0	100
	HBSPEVO8100	100	4	75	-	1.0 ÷ 15.0	100

$d_{_1}$	CODE		L	b	A _P	pcs
[mm] [in]		[mm]	[in]	[mm]	[mm]	
8	HBSPEVO8120	120	4 3/4	95	1.0 ÷ 15.0	100
0.32	HBSPEVO8140	140	5 1/2	110	1,0 ÷ 20,0	100
TX 40	HBSPEVO8160	160	6 1/4	130	1,0 ÷ 20,0	100
10 0.40 TX 40	HBSPEVO1060	60	2 3/8	52	1.0 ÷ 15.0	50
	HBSPEVO1080	80	3 1/8	60	1.0 ÷ 15.0	50
	HBSPEVO10100	100	4	75	1.0 ÷ 15.0	50
	HBSPEVO10120	120	4 3/4	95	1.0 ÷ 15.0	50
	HBSPEVO10140	140	5 1/2	110	1,0 ÷ 20,0	50
	HBSPEVO10160	160	6 1/4	130	1,0 ÷ 20,0	50
	HBSPEVO10180	180	7 1/8	150	1,0 ÷ 20,0	50

350

20,1

350

31,4

TYP R

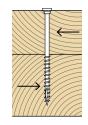
350

11,3

Ideal for fastening standard Rothoblaas plates in outdoor environments.

The 5 mm diameter version is ideal for fastening patio deck planks.

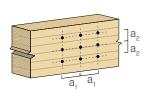
⁽¹⁾ Pre-drilling valid for softwood.


⁽²⁾ Valid for softwood - maximum density 440 kg/m³.

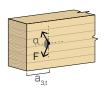
For applications with different materials or with high density please see ETA-11/0030.

MINIMUM DISTANCES FOR SHEAR LOADS

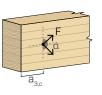
Load-to-grain angle $\alpha = 0^{\circ}$

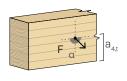


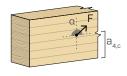
Load-to-grain angle $\alpha = 90^{\circ}$


		SCREWS INSERTED WITH PRE-DRILLING HOLE					SCREWS INSERTED WITH PRE-DRILLING HOLE					
d_1	[mm]		5	6	8	10		5	6	8	10	
a ₁	[mm]	5·d	25	30	40	50	4·d	20	24	32	40	
a ₂	[mm]	3·d	15	18	24	30	4·d	20	24	32	40	
a _{3,t}	[mm]	12·d	60	72	96	120	7·d	35	42	56	70	
a _{3,c}	[mm]	7·d	35	42	56	70	7·d	35	42	56	70	
a _{4,t}	[mm]	3·d	15	18	24	30	7·d	35	42	56	70	
a _{4,c}	[mm]	3·d	15	18	24	30	3·d	15	18	24	30	

		SCREWS INSERTED WITHOUT PRE-DRILLING HOLE					SCREWS IN	ISERTED W	ITHOUT PR	E-DRILLING	G HOLE
d_1	[mm]		5	6	8	10		5	6	8	10
a ₁	[mm]	12·d	60	72	96	120	5·d	25	30	40	50
a ₂	[mm]	5·d	25	30	40	50	5·d	25	30	40	50
a _{3,t}	[mm]	15·d	75	90	120	150	10·d	50	60	80	100
a _{3,c}	[mm]	10·d	50	60	80	100	10·d	50	60	80	100
a _{4,t}	[mm]	5·d	25	30	40	50	10·d	50	60	80	100
a _{4,c}	[mm]	5·d	25	30	40	50	5·d	25	30	40	50


d = nominal screw diameter


stressed end $-90^{\circ} < \alpha < 90^{\circ}$


unloaded end 90° < α < 270°

stressed edge 0° < a < 180°

unload edge 180° < α < 360°

NOTES:

- Minimum distances are in accordance with EN 1995:2014 as per ETA-11/0030 considering a timber characteristic density of $\rho_k \leq 420~\text{kg/m}^3.$
- In the case of joints with elements in Douglas fir, the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.
- The minimum spacing for all steel-to-timber connections (a₁, a₂) can be multiplied by a coefficient of 0,7.
- The minimum spacing for all panel-to-timber connections(a $_{1}$, a $_{2}$) can be multiplied by a coefficient of 0,85.

						TEN	SION							
geometry			timber-to-timber	panel-to-timber ⁽¹⁾			thin steel-timber plate ⁽²⁾ thick steel-timber plate ⁽³⁾				thread withdrawal ⁽⁴⁾	head pull-through ⁽⁵⁾		
			→				→		→ 					
d_1	L	b	Α	R _{V,k}	R	/,k	R	/,k	R _{V,k}		R _{V,k}		$R_{ax,k}$	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[k	N]	[k	N]	[kl	[kN]		N]	[kN]	[kN]
	50	30	20	1,29		1,05		1,12		1,74		2,25	2,03	1,13
5	60	35	25	1,43		1,05	S _{PAN} = 12 mm	1,12	TE =	1,82	mm mm	2,33	2,37	1,13
3	70	40	30	1,51	S _{PA} 9 r	1,05		1,12	S _{PLATE} = 2,5 mm	1,91	S _{PLATE} = 5,0 mm	2,42	2,71	1,13
	80	50	30	1,51		1,05		1,12		2,08		2,59	3,38	1,13
6	80	50	30	2,02	S _{PAN} = 12 mm	1,51	S _{PAN} = 15 mm	1,58	S _{PLATE} = 3,0 mm	2,76	S _{PLATE} = 6,0 mm	3,48	4,06	1,75
	90	55	35	2,18	S _{PA}	1,51		1,58	S _{PL} /3,0	2,86		3,58	4,47	1,75
	40	32	8	1,18		-		-		2,13		3,66	3,47	2,55
	60	52	8	1,18	L	-	_	-	E	3,31	E	5,12	5,63	2,55
	80	55	25	2,67	m.	2,32	m m	2,38	4,0 mm	4,29	8,0 mm	5,45	5,96	2,55
8	100	75	25	2,67	= 15 mm	2,32	= 18	2,38	11	4,83	11	5,99	8,12	2,55
	120	95	25	2,67	Span	2,32	Span	2,38	SPLATE	5,37	SPLATE :	6,53	10,29	2,55
	140	110	30	2,83	S	2,32	S	2,38	Sp	5,60	Spl	6,94	11,91	2,55
	160	130	30	2,83		2,32		2,38		5,60		7,48	14,08	2,55
	60	52	8	1,38		-		-		3,80		6,31	7,04	4,05
	80	60	20	3,45	= 15 mm	2,55	E	3,12	E	5,18	E .	7,74	8,12	4,05
	100	75	25	3,77		2,55	m m	3,12	0, mm	6,56	0,0	8,26	10,15	4,05
10	120	95	25	3,77		2,55	= 18	3,12		7,26	= 10,0 mm	8,93	12,86	4,05
	140	110	30	3,91	Span	2,55	Span	3,12	Splate:	7,77	Splate:	9,44	14,89	4,05
	160	130	30	3,91	S	2,55	S	3,12	Spl	8,09	SPL	10,12	17,60	4,05
	180	150	30	3,91		2,55		3,12		8,09		10,80	20,31	4,05

NOTES:

- $^{(1)}$ The characteristic shear resistances are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness S_{PAN}.
- The shear resistance characteristics are calculated considering the case of a thin plate (S_{PLATE} \leq 0,5 d₁).
- $\ensuremath{^{(3)}}$ The shear resistance characteristics are calculated considering the case of a thick plate ($S_{PLATE} \ge d_1$).
- $^{(4)}$ The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.
- (5) The axial resistance to head pull-through was calculated using timber elements.

In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

GENERAL PRINCIPLES:

- · Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
- Design values can be obtained from characteristic values as follows:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

- The coefficients γ_M and $k_{\mbox{mod}}$ should be taken according to the current regulations used for the calculation.
- For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
- For the calculation process a timber characteristic density ρ_k = 420 kg/m³
- Values were calculated considering the threaded part as being completely inserted into the wood.
- Sizing and verification of the timber elements, panels and steel plates must be done separately.
- The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
- For different calculation configurations, the MyProject software is available (www.rothoblaas.com).